A Global Approach to Vision-Based Pedestrian Detection for Advanced Driver Assistance Systems

Author David Gerónimo

Thesis Advisor Dr. Antonio M. López

PhD Thesis – 12th February 2010

Computer ⁹ Vision Center

Index

Introduction

- State of the Art (Architecture)
- Foreground Segmentation
- Object Classification
- Detections Refinement
- Pedestrian Detection System
- Conclusions

Index

Introduction

- State of the Art (Architecture)
- Foreground Segmentation
- Object Classification
- Detections Refinement
- Pedestrian Detection System
- Conclusions

The automobile

"key technology for humans"

"changes societies"

"provides progress and freedom"

"development source"

src.: www.oldcartruckads.com

Problem: traffic accidents

WORLDWIDE PedestriktionikiRudopæny ytaion 50 million injured every year 7,000 killed every year, custo of ops ibilliced every year (more than the aid to third world)

Src.: National Photo Company Collection glass negative

Safety measures

Traditional Seat belts Head lamps

Physical sensor-actuator Airbags Antilock Brake System (ABS) Electronic Stability Control (ESC)

Advanced Driver Assistance Systems (ADAS) Adaptive Cruise Control (ACC) Adaptive Headlamps Lane Departure Warning System Pedestrian Protection System (PPS)

Src.: Ford Motor Company

Src.: Gerdbrendel

Safety measures

Traditional Seat belts Head lamps

Physical sensor-actuator Airbags Antilock Brake System (ABS) Electronic Stability Control (ESC)

Advanced Driver Assistance Systems (ADAS) Adaptive Cruise Control (ACC) Adaptive Headlamps Lane Departure Warning System Pedestrian Protection System (PPS)

Src.: Jeff Dean

Src.: www.aa1car.com

Safety measures

Traditional Seat belts Head lamps

Physical sensor-actuator Airbags Antilock Brake System (ABS) Electronic Stability Control (ESC

Src.: A.M. López et al., ACIVS08

Src.: Bosch.com

Advanced Driver Assistance Systems (ADAS) Adaptive Cruise Control (ACC) Adaptive Headlamps

Lane Departure Warning (LDW) Pedestrian Protection System (PPS)

Src.: A.M. López et al., ITSC05

Pedestrian Protection System (PPS)

A PPS is formally defined as a system that detects both static and moving people in the surroundings of the vehicle (typically in the front area) in order to provide information to the driver and perform evasive or braking actions on the host vehicle if needed.

Thesis motivation

A global approach to vision-based pedestrian detection for advanced driver assistance systems

Main objective

A global approach to vision-based **pedestrian detection** for advanced driver assistance systems

general human detection

Src.: N. Dalal, PhDThesiso6

ADAS

Main objective

A global approach to vision-based pedestrian detection for advanced driver assistance systems

surveillance, retrieval, etc.

Src.: P. Viola et al., IJCV05

ADAS

Main objective

A global approach to vision-based pedestrian detection for advanced driver assistance systems

LIDAR, RADAR, etc.

Src.: K. Fuerstenberg., IVo2

Camera-based (daytime)

Main objective

A global approach

to vision-based pedestrian detection for advanced driver assistance systems

Classification viewpoint

Global viewpoint

Src.: A. Shashua et al., IV04

Src.: N. Dalal et al., CVPR05

Objectives of the thesis

- ✓ Review of the state of the art (define general architecture)
- ✓ Foreground segmentation (new proposals and algorithms evaluation)
- \checkmark Object classification
- ✓ Refinement techniques (clustering and shape extraction)
- ✓ System (based on 3 components)
- ✓ Pedestrian datasets

Index

Introduction

- State of the Art (Architecture)
- Foreground Segmentation
- Object Classification
- Detections Refinement
- Pedestrian Detection System
- Conclusions

Contributions

- ✓ Generic architecture of pedestrian protection systems
- ✓ Review of vision-based approaches (both visible and infrared)
- $\checkmark\,$ Review of sensor fusion approaches
- $\checkmark\,$ Review of evaluation protocols and datasets
- $\checkmark\,$ Discussion on future trends

Index

- Introduction
- State of the Art (Architecture)
- Foreground Segmentation
- Object Classification
- Detections Refinement
- Pedestrian Detection System
- Conclusions

Contributions

- $\checkmark\,$ New evaluation dataset
- \checkmark New evaluation protocol
- ✓ Performance study of five different algorithms
- ✓ New algorithm: adaptive road scanning (with and without 3D filtering)
- ✓ New algorithm: probabilistic 3D scanning

Evaluation Methodology

Computer Vision Center Candidate Generation Pedestrian Dataset (CVC-02-CG)

Color

Depth map

3D points

Evaluation Methodology

Evaluation Methodology

Candidate Generation Performance (CGP) plot

Sliding Window

[Papageorgiou00,Dalal05]

Sliding Window

-O- Sliding Window

220,000 to 1,300,000 candidates

0 s generation

22 to 130 s classification (assuming 0.1 ms/window)

Flat World Assumption

[Bertozzi03,Gavrila04,Ponsa05]

Flat World Assumption

42,000 candidates0 s generation4.2 s classification

(5% shown)

Flat World Assumption

Adaptive Road Scanning

Adaptive Road Scanning

32,000 candidates0.16 s generation3.2 s classification

(5% shown)

Adaptive Road Scanning with 3D-based filtering

Adaptive Road Scanning with 3D-based filtering

(100% shown)

7,000 candidates0.19 s generation0.7 s classification

Probabilistic 3D Scanning

Bayesian Network

40

Probabilistic 3D Scanning -O- Sliding Window - Flat World Assumption -D Adaptive Road Scanning Adaptive Road Scanning with 3D-based Filtering Probabilistic 3D Scanning Candidates Per Annotation -5 1 500 000 0.75 1 000 000 0.5 500 000 0.25 True Positive Rate Non Pedestrian Candidates 0 0

(5% shown)

36,000 candidates40 s generation3.6 s classification

Statistics

Algorithm	#candidates	TPR	Total time (foreg.+classif.)
Sliding window (perfect)	1 300 000	1.00	130 s
Sliding window (dense)	700 000	0.98	70 s
Sliding window (sparse)	220 000	0.75	22 s
Flat world assumption	42 000	0.35	4.2 s
Adaptive road scanning	32 000	0.74	3.36 s
Adaptive + 3D filtering	7 000	0.66	0.89 s
Probabilistic 3D scanning	36 000	0.90	43.6 s

(Note: assuming that the classifier takes 0.1ms per candidate)

Index

- Introduction
- State of the Art (Architecture)
- Foreground Segmentation
- Object Classification
- Detections Refinement
- Pedestrian Detection System
- Conclusions

Contributions

- ✓ New dataset
- \checkmark Simplified HOG (+ SVM)
- ✓ HaarEOH (+ AdaBoost)
- $\checkmark\,$ Comparisons using different algorithms
 - \checkmark Classifiers
 - ✓ Candidate Generation
 - ✓ Source of training samples
- ✓ Analysis of results (intersection of TP,FN,FP)

A study of classifiers

Simplified Histograms of Oriented Gradients (SHOG+SVM)

A study of classifiers

HaarEOH+AdaBoost

Experimental Results

Experimental Results

(detection rate vs false positive per window plot)

HOG outperforms SHOG in INRIA dataset (-13% DR at 10⁻⁴ FPPW)

Experimental Results

(detection rate vs false positive per window plot)

HOG outperforms SHOG in INRIA dataset (-13% DR at 10⁻⁴ FPPW)

SHOG outperforms HOG in CVC-02 dataset (+5% DR at 10⁻⁴ FPPW)

Experimental Results

(detection rate vs false positive per window plot)

HOG outperforms HaarEOH in CVC-02 dataset (-3% DR at 10⁻⁴ FPPW)

More features in HaarEOH gives poorer results (-10% DR at 10⁻⁴ FPPW)

Experimental Results

(detection rate vs false positive per image plot)

(Foreground segmentation + Classification)

In the near range, foreground segmentation algorithms are <u>similar</u>, although <u>probabilistic</u> and <u>adaptive+3D</u> are better. (happens in both classifiers)

Sliding Window (perfect) Adaptive Road Scanning Adaptive Road Scanning + 3D Filtering Probabilistic 3D Scanning

Experimental Results

(detection rate vs false positive per image plot)

(Foreground segmentation + Classification)

In the far range, probabilistic and <u>sliding</u> window are the best. (happens in both classifiers)

(+10..+20% DR at 10⁰ FPPI)

Sliding Window (perfect) Adaptive Road Scanning Adaptive Road Scanning + 3D Filtering Probabilistic 3D Scanning

Experimental Results

Sliding window

Adaptive road scanning <u>+ 3D</u>

SHOG

Adaptive road scanning

Experimental Results

Sliding window

Adaptive road scanning + 3D

HaarEOH

Adaptive road scanning

Experimental Results

Sliding window

Adaptive road scanning

Adaptive road scanning + 3D

SHOG

Experimental Results

Sliding window

Adaptive road scanning

Adaptive road scanning + 3D

Index

Introduction

- State of the Art (Architecture)
- Foreground Segmentation
- Object Classification
- Detections Refinement
- Pedestrian Detection System
- Conclusions

Contributions

- ✓ New clustering algorithm: accumulative.
- Clustering algorithms comparison, together with the other components of the system.
- \checkmark Shape extraction method that does not require segmented models.

Detections clustering

Meanshift clustering

[Comaniciu03, Dalal06PhD]

Detections clustering

Accumulative clustering

Experimental Results

There is <u>no significant</u> <u>difference</u> between the algorithms performance.

But <u>accumulative is 6 times</u> <u>faster</u> than meanshift.

introduction state of the art foregrou

foreground segmentation object

object classification detections refinement

Experimental Results

Experimental Results

Which is the best?

precise (simulated)

imprecise (simulated)

Experimental Results

sliding window

	precise	Imprecise
precision	0.9195	0.8856
recall	0.9924	0.9792
f-measure	0.9545	0.9300

It depends: the clustering is affected both by the <u>classifier and foreground</u> <u>segmentation</u>.

adaptive road scanning

	precise	Imprecise
precision	0.9457	0.8695
recall	0.5924	0.9056
f-measure	0.7284	0.8871

Experimental Results

SHOG + Accumulative

Experimental Results

SHOG + Accumulative

Shape extraction via non-explicit shape models

TEST

67

Experimental Results

Original detections

Algorithm output

Overlayed output and center of mass

Index

Introduction

- State of the Art (Architecture)
- Foreground Segmentation
- Object Classification
- Detections Refinement
- Pedestrian Detection System
- Conclusions

Pedestrian Detection System

Contributions

- $\checkmark\,$ Novel pedestrian detection system.
- $\checkmark\,$ New dataset of real complex urban scenarios.

Pedestrian Detection System

System components

Experimental Results (quantitative)

(tested on 15 sequences)

High performance

Average performance

Low performance

introduction state of the art

foreground segmentation

object classification

detections refinement

Experimental Results (qualitative)

Experimental Results (qualitative)

Experimental Results (qualitative)

Index

Introduction

- State of the Art (Architecture)
- Foreground Segmentation
- Object Classification
- Detections Refinement
- Pedestrian Detection System
- Conclusions

Summary and Contributions

 $\checkmark\,$ Survey of the state of the art

D. Gerónimo, A.M. López, A.D. Sappa and T. Graf. *Survey of Pedestrian Detection for Advanced Driver Assistance Systems*. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2009. (in press)

Summary and Contributions

- \checkmark Survey of the state of the art
- ✓ Foreground segmentation

D. Gerónimo, A.D. Sappa, J. Serrat and A.M. López. *Candidate Generation for On-Board Pedestrian Detection.* IEEE Trans. on Pattern Analysis and Machine Intelligence (submitted).

D. Gerónimo, A.D. Sappa and A.M. López. *Stereo-based candidate generation for pedestrian proetection systems.* In Binocular Vision: development, depth and disporders, NOVA Publishers (in press), 2009.

A.D. Sappa, F. Dornaika, D. Ponsa, D. Gerónimo and A.M. López. *An Efficient approach to Onboard Stereo Vision System Pose Estimation*. IEEE Trans. on Intelligent Transportation Systems, vol.9, num. 3, pp. 476-490, 2008.

78

A.D. Sappa, D. Gerónimo, F. Dornaika and A.M. López. **On-board camera extrinsic parameter estimation.** IEE Electronics Letters, 42(13), pp.745-747, 2006.

Summary and Contributions

- $\checkmark\,$ Survey of the state of the art
- ✓ Foreground segmentation
- \checkmark Object classification in the context of the system (specially fore. segm.)

Summary and Contributions

- $\checkmark\,$ Survey of the state of the art
- ✓ Foreground segmentation
- $\checkmark\,$ Object classification in the context of the system (specially fore. segm.)
- ✓ Detections refinement

Summary and Contributions

- $\checkmark\,$ Survey of the state of the art
- ✓ Foreground segmentation
- $\checkmark\,$ Object classification in the context of the system (specially fore. segm.)
- ✓ Detections refinement
- $\checkmark\,$ Three techniques integrated in a system

D. Gerónimo, A.D. Sappa, D. Ponsa and A.M. López. **2D-3D based on-board pedestrian detection system**. Computer Vision and Image Understanding, Special Issue on Intelligent Systems, 2010. (in press)

Summary and Contributions

- $\checkmark\,$ Survey of the state of the art
- ✓ Foreground segmentation
- \checkmark Object classification in the context of the system (specially fore. segm.)
- ✓ Detections refinement
- $\checkmark\,$ Three techniques integrated in a system
- $\checkmark\,$ Pioneer multi-purpose pedestrian dataset

CVC-02 Pedestrian Dataset http://www.cvc.uab.es/adas/datasets

Future lines of research

- ✓ Keep improving foreground segmentation
- ✓ Incorporating new classification algorithms
- $\checkmark\,$ Add verification and tracking to the system
- ✓ Research unexplored problems (occlusions, nighttime, etc.)

Src.: Popular Science, Sept. 2004

^{author} david gerónimo gómez

e-mail dgeronimo@cvc.uab.es

web http://www.cvc.uab.es/~dgeronimo

