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Abstract—Pedestrian detection is of paramount interest for many applications. Most promising detectors rely on discriminatively learnt

classifiers, i.e., trained with annotated samples. However, the annotation step is a human intensive and subjective task worth to be

minimized. By using virtual worlds we can automatically obtain precise and rich annotations. Thus, we face the question: can a

pedestrian appearance model learnt in realistic virtual worlds work successfully for pedestrian detection in real-world images?

Conducted experiments show that virtual-world based training can provide excellent testing accuracy in real world, but it can also suffer

the data set shift problem as real-world based training does. Accordingly, we have designed a domain adaptation framework, V-AYLA,

in which we have tested different techniques to collect a few pedestrian samples from the target domain (real world) and combine them

with the many examples of the source domain (virtual world) in order to train a domain adapted pedestrian classifier that will operate in

the target domain. V-AYLA reports the same detection accuracy than when training with many human-provided pedestrian annotations

and testing with real-world images of the same domain. To the best of our knowledge, this is the first work demonstrating adaptation of

virtual and real worlds for developing an object detector.

Index Terms—Pedestrian detection, photo-realistic computer animation, data set shift, domain adaptation

Ç

1 INTRODUCTION

PEDESTRIAN detection is of paramount interest in fields
such as driving assistance, surveillance and media

analysis [1], [2], [3], [4]. The main component of a pedes-
trian detector is its pedestrian classifier, since it decides if
an image window contains a pedestrian or not. Most
promising classifiers have appearance as core feature and
are learnt discriminatively, i.e., from annotated windows;
where such pedestrian and background windows are the
examples and the counterexamples, respectively, to feed the
learning machine. Having sufficient variability in the sam-
ples (examples and counterexamples) is decisive to train
classifiers able to generalize properly [5]. Obtaining such
a variability is not straightforward since annotated sam-
ples are obtained through a subjective and tiresome
manual task. In fact, having good annotated examples is
an issue for object detection in general, as well as for cate-
gory recognition, image classification and any other
visual task involving discriminative learning.

Accordingly, in the last years different web-based tools
have been proposed for manually collecting image anno-
tations [6]. Among them, Amazon Mechanical Turk
(MTurk) [7] centralizes nowadays the most powerful
annotation force. However, how to collect data on the inter-
net is a non-trivial question that opens a new research
area [6], [8] involving ethical questions too [9] since human
paid work is at the core.

In order to collect useful samples and reduce manual
annotations, the so-called active learning [10] has also been
explored in object detection. For instance, semi-automatic
visual learning (SEVILLE) [11] and active-learning-based
vehicle recognition and tracking (ALVeRT) [12] systems
develop a pedestrian and a vehicle detector, respectively.
Both systems use AdaBoost as base classifier. In SEVILLE
weak rules are decision stumps based on descriptors
referred to as YEF. In ALVeRT the decision stumps are
based on Haar descriptors. In such systems active learn-
ing consists of a stage to obtain an initial classifier (passive
learning), followed by a loop in which the current classifier
is plugged in a detector that is applied to unseen images,
a human oracle performs selective sampling (i.e., annotation
of image windows falling into the classifier ambiguity
region) and then previous and new annotations are used
for re-training the classifier. Active learning is especially
interesting to collect informative examples (pedestrians/
vehicles) since hard counterexamples (background) are
satisfactorily collected by having example-free images
and properly using bootstrapping [1]. SEVILLE uses 215
passively annotated pedestrians, while 2,046 new ones are
actively annotated. ALVeRT annotates 7,500 vehicles pas-
sively and 10,000 actively.

In the approaches mentioned so far, examples are anno-
tated from existing image captures. Alternatively, we can
engineer them as in [13], where pedestrians are synthesized
by transforming their original shape, texture, and surround-
ing background. Aiming at increasing pedestrian variabil-
ity, such a transform is applied according to selective
sampling within an active learning framework. Both NNs
with LRFs and SVM with Haar are used as base classifiers.
The reported results show the same accuracy than when
using a human oracle. However, much of the improvement
comes from enlarging the training set by slightly perturbing
each pedestrian bounding box (BB) location (so-called
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jittering) as well as gathering counterexamples with selec-
tive sampling on pedestrian-free images (a sort of bootstrap-
ping). Moreover, for synthesizing the pedestrians it was not
sufficient to annotate them with BBs, but costly manual sil-
houette delineation was required. In fact, obtaining manipu-
lated good-looking images of people by performing holistic
human body transformations is in itself an area of research,
specially when video is involved and thus temporal coher-
ence is required [14].

Instead of developing pedestrian models from real-
world images, rough textureless pedestrian templates
were used in [15] for building a template-matching-based
pedestrian detector for far infrared images (i.e., capturing
relative temperature). However, the authors admit poor
results due to the lack of realism in the synthetic tem-
plates. Similarly, in [16] a human renderer is used to ran-
domly generate synthetic human poses for training an
appearance-based pose recovery system. However, these
are close human views, usually from the knees up, and it
must be assumed either that human detection has been
performed before pose recovery, or that the field-of-view
is filled by a human.

In this paper we propose a new idea for collecting
training annotations. We want to explore the synergies
between modern computer animation and computer
vision in order to close the circle: the computer animation
community is modelling the real world by building
increasingly realistic virtual worlds, thus, can we now learn
our models of interest in such controlable virtual worlds and
use them back successfully in the real world? Note that mod-
ern videogames, simulators and animation films, are gain-
ing photo-realism. In fact, all the ingredients for creating
soft artificial life are being improved: visual appearance
both global (3D shape, pose) and local (texture, where
involved computer graphics aim at approaching the
power spectrum of real images [17]), kinematics, percep-
tion, behavior and cognition. For instance, see [18] for the
case of animating autonomous pedestrians in crowded
scenarios. This means that from such virtual worlds we
could collect an enormous amount of automatically anno-
tated information in a controlled manner. Within this
global context we are currently focused on a more specific
question, namely, can a pedestrian appearance model learnt in
realistic virtual scenarios work successfully for pedestrian
detection in real images? (see Fig. 1).

There are different possibilities to assess the posed
question. We can learn a holistic pedestrian classifier
using dense descriptors [1], [2], [4], or the pedestrian sil-
houette [19]. Analogously, we can learn a part-based
pedestrian classifier with dense descriptors [20], or using
the pedestrian silhouette instead [21]. In all cases, differ-
ent learning machines can be tested as well. Thus, given
such an amount of possibilities, in [22] we followed the
popular wisdom of starting from the beginning. In particu-
lar, using virtual-world samples, we trained a holistic
pedestrian classifier based on histograms of oriented gra-
dients (HOG) and linear SVM (Lin-SVM) [23]. We tested
such a classifier in a data set made available by Daimler
AG [2] for pedestrian detection benchmarking in the
driver assistance context, our main field of interest. The
results were compared with a pedestrian detector whose

classifier was trained using real-world images. The com-
parison revealed that virtual and real-world based train-
ing give rise to similar classifiers.

In this paper we present a more in depth analysis by
introducing new descriptors and data sets used in the con-
text of pedestrian detection, so that we can better appreciate
the effect of employing virtual world for training. We use
an improved virtual world too. Training with Lin-SVM we
assess the behavior of HOG, and of cell-structured local
binary patterns (LBP) [24]. Since HOG is more related to
overall shape and LBP to texture, following [24] we combine
HOG and LBP too. We evaluate HOG and LBP separately
instead of only considering the combination HOG+LBP,
because we aim to assess the behavior of such single
descriptors when transferred from virtual-world images to
real-world ones; moreover they are used separately as
experts by some mixture-of-experts pedestrian classifiers
[25]. HOG and LBP are key descriptors of state-of-the-art
part-based object detectors [20], [26].

Our experiments will show that we obtain the same
accuracy by training with real-world based samples than
by using virtual-world ones, which is encouraging from
the viewpoint of object detection in general. However,
not only good behavior is shared between virtual- and
real-world based training, but some undesired effects too.
For instance, let us assume that, for learning a pedestrian
classifier, we annotated hundred of pedestrians in images
acquired with a given camera. Using such camera and
classifier we solve our application. Say that later we shall
use a camera with a different sensor or we have to apply
the classifier in another similar application/context but
not equal. This variation can decrease the accuracy of our
classifier because the probability distribution of the train-
ing data can be now much different than before with

Fig. 1. Can a pedestrian appearance model learnt in realistic virtual sce-
narios work successfully for pedestrian detection in real images?
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respect to the new testing data. This problem is referred
to as data set shift [27] and is receiving increasing atten-
tion in the Machine Learning field [27], [28], [29] due to
its relevance in areas like natural language processing,
speech processing, and brain-computer interfaces, to
mention a few.

Virtual-world images, although photo-realistic, come
from a different eye than those acquired with a real camera.
Therefore, data set shift can appear. Thus, our proposal of
using virtual worlds to learn pedestrian classifiers requires
adapting training and testing/application domains. For that
we propose a domain adaptation framework called Virtual-
AYLA,1 V-AYLA in short, which stands for virtual-world
annotations yet learning adaptively. For reaching the
desired accuracy, V-AYLA combines virtual-world sam-
ples with a relatively low number of annotated real-world
ones, within what we call cool world.2 To the best of our
knowledge, this is the first work demonstrating adaptation
of virtual and real worlds for developing an appearance-
based object detector.

As proof of concept, in this paper V-AYLA relies on
active learning for collecting a few real-world pedestrians,
while each original descriptor space as well as the so-
called augmented descriptor space will be used as cool
worlds. Note that in SEVILLE and ALVeRT active learn-
ing is not used for doing domain adaptation since training
and testing sets come from the same camera and scenar-
ios. We borrowed the idea of augmented descriptor space
from [29], where it is applied to different problems though
no one related to computer vision, a field that has largely
disregarded data set shift. Fortunately, this problem has
also been explored recently in object recognition [30], [31],
although not for a detection task like here. Moreover, in
[30], [31] the domains to be adapted are both based on
real-world images and the involved descriptors are not
the ones used for pedestrian detection.

Section 2 details the data sets, pedestrian detector
stages, and evaluation methodology. Section 3 reports the
results of the detectors developed without domain adap-
tation. Section 4 presents V-AYLA and its results. Section
5 draws the main conclusions.

2 EXPERIMENTAL SETTINGS

2.1 Data Sets

In order to illustrate the domain adaptation problem and
our proposal, we start working with two real-world data
sets and our virtual-world one. As generic real-world data
set we have chosen the INRIA (I ) one [32] since it is very
well-known and still used as reference [1], [4], [24], [33]. It
contains color images of different resolution (320� 240
pix, 1280� 960 pix, etc.) with persons photographed in

different scenarios (urban, nature, indoor). As real-world
data set for driving assistance we use the one of the auto-
motive company Daimler (D) [2], which contains urban
scenes imaged by a 640� 480 pix monochrome on-board
camera at different day times. Both INRIA and Daimler
data sets are found divided into training and testing sets.
The virtual-world data set (V) is generated with Half Life
2 videogame by city driving as detailed in [22]. For this
work we have generated new virtual-world color images
containing higher quality textures with anisotropic inter-
polation, more sequences to extract pedestrians, anti-
aliased pedestrian-free images, and much more variability
in urban furniture, asphalts, pavement, buildings, trees,
pedestrians, etc. Emulating Daimler, virtual-world images
are of 640� 480 pix resolution. Virtual-world data is only
for training.

INRIA data includes a set of training images, =trþI , with
the BB annotation of 1,208 pedestrians. Daimler training
set contains 15,660 cropped pedestrians. The images con-
taining them are not available (i.e., there is not a =trþD ).
These pedestrians were generated from 3,915 original
annotations by jittering and mirroring. At virtual world
we can acquire a set of images, =trþV , of any desired cardi-
nality, with annotated pedestrians.

A priori training with more pedestrians could lead to
better classifiers. For avoiding such a potential effect, the
cardinality of the smallest pedestrian training set (i.e.,
1,208) is used in our experiments. In the case of Daimler,
firstly we grouped jittered and mirrored versions of the
same annotation, obtaining 3,915 groups out of the 15,660
provided pedestrians. Secondly, we selected 1,208
cropped pedestrians by randomly taking either zero or
one per group. In the case of the virtual-world pedes-
trians, we selected 1,208 randomly. In all cases, we gener-
ate a copy of each pedestrian by vertical mirroring. Thus,
the number of available pedestrians for training with each
data set is 2,416. Hereinafter, we term as T trþI , T trþD and
T trþV these sets (of the same cardinality) from INRIA,
Daimler, and virtual world, respectively.

Additionally, each data set includes pedestrian-free
images (=tr�V ;=tr�I ;=tr�D ) from which gathering counterex-
amples for training. INRIA provides 1,218 of such images
and Daimler 6,744. As with pedestrians, we limit the
number of pedestrian-free images to 1,218 per data set.
Thus, we use all the INRIA ones, for Daimler we ran-
domly choose 1,218 out of the 6,744 available. For the vir-
tual-world case, we randomly collected 1,218 pedestrian-
free images. The final number of used counterexamples
from each data set depends on bootstrapping (see Sec-
tion 3.1). Hereinafter, we note such sets of counterexam-
ples from INRIA, Daimler and virtual world as T tr�I , T tr�D
and T tr�V , respectively. Accordingly, we define the train-
ing settings T trX ¼ fT trþX ; T tr�X g, X 2 fD; I ;Vg.

We use the complete INRIA testing data set (T ttI ) con-
sisting of 563 pedestrians in 288 frames and 453 pedes-
trian-free images. As Daimler testing data set (T ttD) we
use 976 mandatory frames, i.e., frames containing at least
one mandatory pedestrian. Daimler defines non-manda-
tory pedestrians as those either occluded, not upright, or
smaller than 72 pix high, the rest are considered manda-
tory and correspond to pedestrians in the range [1.5m,

1. AYLA evokes the main character, a Cro-Magnon women, of
Earth’s Children saga by J. M. Auel. Ayla is an icon of robustness and
adaptability. During her childhood she is educated by Neanderthals
(The Clan), whose physical appearance corresponds to normal humans
for her. However, she recognizes Cro-Magnons as humans too the first
time she met them. Ayla adapts from Neanderthals to Cro-Magnons
customs, keeping the best of both worlds.

2. Cool world term evokes the film with that title. In it, there is a real
and a cool world, in the latter real humans live with cartoons.
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25m] away from the vehicle. There are 1,193 mandatory
pedestrians in T ttD. Sets T ttI and T ttD are complementary in
several aspects. T ttI images are hand-shotted color photos,
while T ttD contains on-board monochrome video frames.
This turns out in complementary resolutions of the
pedestrians to be detected. Moreover, T ttD only contains
urban scenes, while in T ttI we found scenarios like city
(916 pedestrians), beach (50), countryside (138), indoor
(87) and snow (17).

Fig. 2 shows virtual- and real-world samples. More-
over, Table 5 summarizes the notation used along the
paper, e.g., as the one in this section.

2.2 Pedestrian Detector

In order to detect pedestrians, we scan a given image for
obtaining windows to be classified as containing a pedes-
trian (positives) or not (negatives) by a learnt classifier.
Since multiple positives can be due to a single pedes-
trian, we must select the best one, i.e., the window detect-
ing the pedestrian. Fig. 1 illustrates the idea for a
pedestrian classifier learnt with virtual-world data. We
will describe the learning of such classifiers in Section 3.1.
In the following we briefly review the employed scan-
ning and selection procedures.

The scanning uses a pyramidal sliding window [32].
It consists in constructing a pyramid of scaled images.
The bottom (higher resolution) is the original image,
while the top is limited by the size of the so-called
canonical window (CW, Section 3.1). At the pyramid level
i 2 f0; 1; . . .g, the image size is ddx=sipe � ddy=sipe, being
dx � dy the dimension of the original image (i ¼ 0), and
sp a provided parameter. Opposite to [32], for building
levels of lower resolution we perform down-sampling
by using standard bilinear interpolation with anti-alias-
ing, as in [34]. Then, a fixed window of the CW size
scans each pyramid level according to strides sx and sy,
in x and y axes, resp. We set <sx; sy; sp > :¼ < 8; 8; 1:2>
as a good tradeoff between detection accuracy and proc-
essing time. LBP and HOG are usually computed with-
out anti-aliasing. However, we have experimentally seen
(see Section 3.2) that, in general, the pyramid with anti-
aliasing boosts the accuracy of the pedestrian detectors
based on them.

The CW of a classifier trained with T trI is larger than
with T trD (see Section 3.1). Then, if we train with T trD and
test with T ttI , we down-scale the testing images using
bilinear interpolation with anti-aliasing. If we train with
T trI and test with T ttD, following [35] advice we up-scale
the testing images using bilinear interpolation. T trV can be
adapted to any CW (see Section 3.1).

As a result of the pyramidal sliding window, several
overlapped positives at multiple scales and positions are
usually found around the pedestrians. We apply non-
maximum-suppression [36] to (ideally) provide one sin-
gle detection per pedestrian.

2.3 Evaluation Methodology

In order to evaluate the pedestrian detectors we repro-
duce the proposal in [4]. Thus, we use performance
curves of miss rate versus false positives per image. We focus
on the range FPPI ¼ 10�1 to 100 of such curves, where
we provide the average miss rate (AMR) by averaging its
values taken at steps of 0.01. Accordingly, such an AMR
is a sort of expected miss rate when having one false pos-
itive per five images. This is an interesting assessment
point for our application area, i.e., driver assistance, since
such a FPPI can be highly reduced by a temporal coher-
ence analysis. Besides, all annotated INRIA testing pedes-
trians and the mandatory ones of Daimler must be
detected (see Section 2.1).

The evaluation procedure described so far is rather stan-
dard. However, according to our daily working experience,
even using a good bootstrapping method [1] (see Section 3.1)
the AMR measure can vary from half to even one and a half
points, up or down, due to some random choices during the
training process. For instance, initial background samples
in standard passive training (see Section 3), or samples from
real world in domain adaptation training (see Section 4).
Thus, in this paper we repeat each training-testing run five
times, which is a moderate number of repetitions but, as we
will see, it is sufficient to run different statistical tests that
will validate our hypothesis of interest. Then, rather than
presenting the AMR of a single train-test run, we present
the average of five runs and the corresponding standard
deviation. Overall, this turns out in 520 train-test runs done
for this paper.

Fig. 2. Some of the samples used to train with real-world images (Daimler and INRIA) and virtual-world ones.
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3 PASSIVE TRAINING

In this section we focus on the situation in which a pre-
fixed set of annotated data is used to learn a classifier.
We term this approach as passive. Sets T trX , X 2 fD; I ;Vg,
are of such a type, and passive learning is the most wide-
spread in pedestrian detection [3].

3.1 Pedestrian Classifier Training

Discriminative learning of a pedestrian classifier requires
the computation of descriptors able to distinguish pedes-
trians from background. As we introduced in Section 1,
HOG and LBP are very well suited for this task. For such
descriptors being useful, a canonical size of pedestrian
windows must be fixed. This CW size, w� h pix, depends
on the data set.

For INRIA we have w� h � ð32þ 2fÞ � ð96þ 2fÞ,
where f denotes the thickness (pix) of a background
frame around the pedestrian. Thus, annotated pedes-
trians are scaled to 32� 96 pix. Analogously, for Daimler
w� h � ð24þ 2fÞ � ð72þ 2fÞ. For INRIA and HOG/LBP
descriptors, f ¼ 16 is of common use in the literature,
e.g., this f gives rise to the traditional INRIA CW of
64� 128 pix [23]. For Daimler and HOG/LBP, f ¼ 12,
therefore, w� h � 48� 96 [2].

We just consider virtual-world pedestrians larger than
32� 96 pix. When training classifiers for testing in T ttI we
use w� h � ð32þ 2fÞ � ð96þ 2fÞ, while for testing in T ttD
we use w� h � ð24þ 2fÞ � ð72þ 2fÞ. In both cases we
use exactly the same pedestrian annotations for training,
but in the case of Daimler we down-scale them more
than in the case of INRIA. Hence, we actually have differ-
ent T trþV sets. However, we avoid a more complex nota-
tion for making explicit the differences provided that we
have clarified the situation. As it is done during testing
(see Section 2.2) down-scaling uses bilinear interpolation
with anti-aliasing.

Collecting the counterexamples to form the T tr�X sets,
X 2 fD; I ;Vg, involves two stages. Conceptually, they can
be described as follows. In the first stage, for each exam-
ple in T trþX we gather two counterexamples by randomly
sampling the respective pedestrian-free images (see Sec-
tion 2.1). For doing such a sampling, the pyramid (see Sec-
tion 2.2) of each image is generated and then at random
levels and positions two CWs are taken. Since the cardi-
nality of T trþX is 2,416 and to form the initial T tr�X we have
1,218 pedestrian-free images, we have approximately the
same quantity of examples and counterexamples. In the
second step, we apply bootstrapping [1], [2], [23]. Thus,
with the initial T trþX and T tr�X sets we train a classifier
using the desired descriptors and learning machine. Then,
the corresponding pedestrian detector (see Section 2.2) is

applied on the pedestrian-free training images to extract
the so-called hard counterexamples, i.e., false detections.
All these new counterexamples are added to T tr�X and,
together with T trþX , the classifier is trained again. We keep
this loop until the number of new hard counterexamples
is smaller than 1 percent of the cardinality of current T tr�X
set. Following such a stopping rule of thumb and initial
1:1 ratio between examples and counterexamples, we
found that one bootstrapping step was sufficient in all the
experiments. We forced more bootstrappings in different
experiments to challenge the stopping criteria, but the
results were basically the same because very few new
hard counterexamples were collected. In [1] it is also rec-
ommended to follow a strategy such that almost all coun-
terexamples are collected by the bootstrapping.

Table 1 summarizes the descriptors parameters. HOG
ones are the originals [23]. In the case of LBP, we intro-
duce three improvements with respect to the approach in
[24]. First, we use a threshold in the pixel comparisons,
which increases the descriptor tolerance to noise. Second,
we do not interpolate the pixels around the compared
central one given that it distorts the texture and can
impoverish the results. By doing so we could lose scale-
invariance, but in our case it does not matter thanks to
the image-pyramid. Third, we perform the computation
directly in the luminance channel instead of separately
computing the histograms in the three color channels,
which reduces the computation time while maintaining
the accuracy. Finally, as Lin-SVM implementation we use
LibLinear [38], setting C ¼ 0:01 and bias ¼ 100.

3.2 Experimental Results and Discussion

Table 2 shows the results of the 24 detectors obtained by
passive training. We see that using train and test sets of
different domain increases the AMR mean even 15 points
depending on the descriptor and data set. We argue that
we are facing a data set shift problem. To asses this claim,
we have checked the statistical significance of these
results. For each descriptor, we consider all the detectors
obtained by the different train-test runs using the two
considered real-world training sets. Since we have tested
such detectors on both the training domain (using the cor-
responding testing set) and the other one, by paring the
obtained performances we can apply a paired Wilcoxon test
[39]. The test reveals that for HOG, LBP and HOGþLBP
testing and training with samples/images of the same
domain is better than using different domains in the 99:9
percent of the cases (p-value ¼ 0:001, being the null
hypothesis that source and target domains are equal). The
means of the improvement are 13:62, 10:35 and 10:73
AMR points for HOG, LBP and HOG+LBP, respectively.

TABLE 1
Summary of Descriptors Parameters
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We also argue that training with virtual-world data
exhibits the data set shift, but just as real-world data does.
In order to support this claim, we have analyzed if detec-
tors trained with V data behave similarly to detectors
trained with real-world data (using I and D domains)
when tested on a different domain, again taking into
account all performed training-testing runs. In this case,
since the compared virtual- and real-world-based detec-
tors use different training data, all feasible pairings
between their performances have to be taken into account
and an unpaired Wilcoxon test (a.k.a Mann-Whitney U test
[40]) must be applied. This test allows to conclude that
when using I as testing domain, detectors trained with V
data provide better results than training with D data. This
is true the 99:6 percent of the cases (one sided p-value =
0:004). The means of the improvement are 5:94; 10:89 and
8:85 AMR points for HOG, LBP and HOGþLBP respec-
tively. When the testing domain is D, the analogous analy-
sis reveals that training with V data is better for HOG
than using I (10:62 points), while for LBP and HOGþLBP
training with I data is better (9:46 and 2:18 points, respec-
tively), with one-sided p-value ¼ 0:004. Therefore, regard-
ing data set shift, the virtual-world domain is comparable
to a real-world one.

Usually there are several (possibly simultaneous) rea-
sons giving rise to domain shift. For instance, with HOG,
fT trV ; T

tt
Dg setting offers similar results to fT trD; T

tt
Dg one,

while fT trV ; T
tt
I g results are much more distant from

fT trI ; T ttI g, probably because our virtual-world data comes
from urban scenes as Daimler data, but INRIA incorpo-
rates other scenarios. For LBP, however, fT trV ; T ttDg results
are much worse than fT trD; T ttDg ones. In fact, fT trV ; T ttDg
result based on HOG is approximately 15 points better
than the LBP one, while HOG and LBP show a difference
of around 5 points for fT trD; T ttDg. Thus, the textures of the
virtual-world somehow differ more from Daimler images
than the shape of the pedestrians. The best result corre-
sponds to combining HOG and LBP. In this case, for

instance, fT trV ; T ttI g setting is around 10 points worse than
using fT trI ; T ttI g one. This can be due to the fact that typi-
cal background and pose of virtual-world pedestrians do
not include all INRIA cases (e.g., out-of-city pictures). The
result for HOG+LBP and fT trV ; T

tt
Dg is approximately two

points worse than for fT trD; T
tt
Dg, which could come from

the pedestrians clothes (texture/LBP) rather than from
pedestrian poses (shape/HOG). We do not want to ana-
lyze every single possible reason producing domain shift,
instead we want to treat all them simultaneously by
applying domain adaptation techniques.

Our current HOG implementation gives better results
for fT trI ; T ttI g and fT trD; T ttDg than the original one [32]
(used by us in [22], [41]) due to the anti-aliasing in
down-scaling operations. Also, our settings for LBP give
better results for fT trI ; T

tt
I g and fT trD; T

tt
Dg than the pro-

posal in [24], thanks to the anti-aliasing and the pattern
discretization threshold. When using HOGþLBP we
obtain an improvement of almost 10 points for fT trI ; T ttI g
and around 16 for fT trD; T ttDg, with respect to [24]. Note
that the better the accuracy when training and testing
within the same domain, the higher the challenge to
reach the same result when using different domains.

4 DOMAIN ADAPTATION

In one-class discriminative learning, samples s 2 S are ran-
domly collected and an associated label y 2 Y is assigned to
each of them, where S and Y ¼ f�1;þ1g are the samples
and annotation spaces, resp. The set of annotated samples
T ¼ fðsk; ykÞjk : 1 . . .ng is divided in two disjoint sets, T tr
and T tt, to train and test a classifier C : S ! Y, resp. It is
assumed a joint probability distribution psðs; yÞ describing
our domain of interest d. Elements in T are randomly drawn
(i.i.d.) from psðs; yÞ and, thus, T tr and T tt too. This is the
case of settings fT trI ; T ttI g and fT trD; T ttDg (see Section 3).

In practice, there are cases in which samples in T tr and
T tt follow different probability distributions. As men-
tioned in Section 1, data set shift is the generic term to
summarize the many possible underlying reasons [27].
We argue that the loss of accuracy seen in Section 3 when
using different sets to test and train pedestrian classifiers
is due to some form of data set shift. For instance, this is
our assumption for settings fT trV ; T ttI g and fT trV ; T ttDg.
Accordingly, in this section we apply domain adaptation to
overcome the problem.

In domain adaptation, it is assumed a source domain, ds,
and a target domain, dt, with corresponding psðs; yÞ and
ptðs; yÞ, which are different yet correlated distributions
since otherwise adaptation would be impossible. Anno-
tated samples from ds are available, as well as samples
from dt that can be either partially annotated or not anno-
tated at all. In this paper, we focus on supervised domain
adaptation [29], where we have a reasonable number of
annotations from ds and some ones from dt too. In particu-
lar, our ds is the virtual world V, and dt is the real world R
(here R 2 fI ;Dg). We assess domain adaptation for HOG3

and LBP separately, as well as for HOGþLBP.

3. In [41], [42] we presented domain adaptation results for INRIA
with HOG/Lin-SVM. However, we used the implementation proposal
in [32] instead of our current one.

TABLE 2
Passive Learning Results

For FPPI 2 ½0:1; 1�, AMR ( %) mean and std. dev. are indicated. Bold
style remarks the lowest mean comparing training sets (T trX ) for fixed
descriptor and testing set (T ttR).
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4.1 Virtual- and Real-World Joint Domain

As described previously, pedestrian classifiers rely on a
descriptor extraction process, D, that transforms the sam-
ples, s, into their respective descriptors (i.e., HOG, LBP,
etc.), x ¼ DðsÞ;x 2 V � <d. Therefore, the learning process
holds in V. In the domain adaptation framework, some x’s
come from ds samples and others from dt samples. Thus, it
arises the question of how to joint both types of x’s in order
to learn domain adapted classifiers. Since our ds is based on
virtual-world samples and dt in real-world ones, as we men-
tioned in Section 1 we call the joint domain cool world. In
this paper we test two cases.

The first one, called ORG, comes from just treating vir-
tual- and real-world descriptors equally. In other words,
from the learning viewpoint, virtual- and real-world sam-
ples are just mixed within the original V.

The second cool world, AUG, is based on the so-called
feature augmentation technique proposed in [29]. Instead of
working in V, we work in V3 by applying the mapping
F : V! V3 defined as FðxÞ ¼ <x;x;0> if s 2 V and
FðxÞ ¼ <x;0;x> if s 2 R, where 0 is the null vector in V,
and x ¼ DðsÞ. Under this mapping, < x;0;0 > corre-
sponds to a common subspace of V3 where virtual and
real-world samples (i.e., their descriptors) meet,
<0;x;0> is the virtual-world subspace, and <0;0;x>
the real-world one. The rational is that learning using FðxÞ
descriptors instead of x ones allows the SVM algorithm to
jointly exploit the commonalities of ds and dt, as well as
their differences. We refer to [29] for an explanation in
terms of SVM margin maximization.

4.2 Real-World Domain Exploration

Let nt:p: be the maximum number of target domain (real-
world) pedestrians a human oracle O is allowed to provide
for training. We test four behaviors for O.

Following the first behavior, O annotates nt:p: pedes-
trians at random (Rnd). The rest of behaviors are based on
a sort of selective sampling [10]. In particular, there is a first
stage consisting in learning a pedestrian classifier, CV , by
using the the virtual-world samples and passive learning.
Such a classifier is used in a second stage to ask O for
difficult samples from the real-world data. We will see in
Section 4.3 that such samples jointly with the virtual-
world ones will be used in a third stage for retraining.

In the second behavior, active learning for pedestrians
(Actþ), O annotates nt:p: difficult-to-detect pedestrians. Anal-
ogously, we term our third behavior as active learning for
background (Act�) because O only marks false positives. The
idea behind Act� is not to collect the annotated false posi-
tives, but the right detections (true positives) as provided
by the used pedestrian detector. In other words, in this case,
the BB annotations of the nt:p: real-world pedestrians are
provided by the pedestrian detector itself. Finally, we term
as Act� the fourth behavior since it is a combination of
Actþ and Act�. In this case we allow to collect 2nt:p: real-
world pedestrians because just nt:p: are manually annotated
with BBs, which is the task we want to avoid.

Let us define the difficult cases for CV . Given a real-
world sample sR, if CVðsRÞ > Thr, then sR is classified as
pedestrian. Accordingly, in the Actþ case, O will annotate

real-world pedestrians, sþR, for which CVðsþRÞ 	 Thr. In the
Act� case, those background samples, s�R, for which
CVðs�RÞ > Thr must be rejected by O. For the Act� both
things hold. In general, selective sampling for SVM focus
on samples inside the ambiguity region ½�1; 1�. However,
underlaying such an approach is the assumption of a
shared train and test domain. Here, due to data set shift,
wrongly classified samples out of the margins can be
important to achieve domain adaptation.

Finally, we would like to clarify that in this paper we
are interested in assessing the type of real-world data,
which changes with O, needed for complementing the vir-
tual-world one for domain adaptation. Our next future
work will use the obtained conclusions for devising unsu-
pervised domain adaptation methods, while the super-
vised domain adaptation results obtained here will act as
baseline. Thus, in this paper we do not focus on evaluat-
ing the human annotation effort of active oracles versus
Rnd. In our work the significant saving of human annota-
tions comes from the use of the virtual world.

4.3 Domain Adaptation Training: V-AYLA

Assume the following definitions of training sets:

� Source domain. Let =trþV be the set of virtual-world
images with automatically annotated pedestrians,
and =tr�V the set of pedestrian-free virtual-world
images automatically generated as well.

� Target domain. Let =trþR be a set of real-world images
with non-annotated pedestrians, and =tr�R a set of
pedestrian-free real-world images.

Take the following decisions:

� Classifier basics. Here we assume Lin-SVM algorithm,
and D 2 fHOG;LBP;HOG+LBPg.

� Cool world. Choices are ORG and AUG.

� Oracle. Choices are O 2 fRnd;Actþ;Act�;Act�g.
The training method we use for performing domain

adaptation can be summarized in the following steps:
(s1) Perform passive learning in virtual world using

f=trþV ;=tr�V g and D (see Section 3.1). Let us term as CV the
passively learnt pedestrian classifier and as DV its associ-
ated detector (see Section 2.2). Let T trþV be the set of
pedestrians used for obtaining CV (i.e., coming from =trþV ,
scaled to the CW size and augmented by mirroring), and
T tr�V the set of background samples (coming from =tr�V
after bootstrapping, CW size).

(s2) Selective sampling in real world. In order to obtain
real-world annotated pedestrians, follow O by running
DV on =trþR . If O ¼ Act�, then we collect nt:p: following
Actþ style and nt:p: more following Act� style (which
does not involve manual pedestrian BB annotations). Oth-
erwise, only nt:p: pedestrians are collected. We term as
T trþR the set of such new pedestrian samples scaled to CW
size and augmented by mirroring, and as T tr�R a set of
background samples in CW size, taken from =tr�R as done
in the passive learning procedure before bootstrapping
(thus, the cardinality of T trþR and T tr�R are equal). Note
that to follow O we need to set Thr. For that purpose, we
initially select a few images from =tr�R and take a Thr
value such that after applying DV on the selected images,
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less than 3 FPPI in average are obtained. We start trying
with Thr ¼ 1 and decrease the value in steps of 0:5 while
such a FPPI holds. This is an automatic procedure.

(s3) Perform passive learning in cool world. Map sam-
ples in T trþV , T tr�V , T trþR , and T tr�R to cool world. Next,
train a new classifier with them according to D. Then,
perform bootstrapping in =tr�R . Finally, re-train in cool
world to obtain the domain adapted classifier.

When O 6¼ Rnd, this is a batch active learning procedure
[43]. Fig. 3 summarizes the idea, which, as we introduced
in Section 1, we term as V-AYLA.

4.4 Experimental Results

This section summarizes the V-AYLA experiments, and we
explain how to simulate the application of V-AYLA on
INRIA and Daimler data for providing fair comparisons
with respect to passive learning.

First of all, we shall restrict ourselves to a maximum
amount of manually annotated pedestrian BBs from the
real-world images (target domain). In the supervised
domain adaptation framework, the cardinality of anno-
tated target samples is supposed to be much lower than
the one of annotated source samples. However, there is
no a general maximum since this depends on the applica-
tion. As rule of thumb, here we want to avoid the 90 per-
cent of the manually annotated BBs. In particular, since
for both INRIA and Daimler we have used 1,208 anno-
tated pedestrians (i.e., before mirroring) in the passive
learning setting, then we will assume the use of a maxi-
mum of 120 manually annotated BBs from real-world
images. Thus, we aim to achieve the same result for the
following two scenarios: (1) applying passive training
using training and testing sets from the same domain,
with 1,208 annotated real-world pedestrians; (2) applying

domain adaptation with a training set based on our vir-
tual-world data plus a set of nt:p: ¼ 120 real-world manu-
ally annotated pedestrians. In both cases it is assumed a
set of real-world pedestrian-free images.

During an actual application of V-AYLA, the real-world
pedestrians used for domain adaptation will change from
one training-testing run to another. Thus, this is simulated
in the experiments conducted in this section. However,
since the five repetitions we apply lead to 300 training-test-
ing runs, although V-AYLA only needs 120 BB annotations
here, this would turn out in 36,000 manually annotated BBs.
Therefore, in order to reduce overall manual effort, we have
simulated the annotation of the pedestrian BBs by just sam-
pling them from the ones available for the passive learning,
according to the different oracle strategies. However, note
that during the actual application of V-AYLA all such pas-
sively annotated pedestrians (i.e., the 1,208 ones in each con-
sidered real-world data set) are not required in advance for
further oracle sampling. Our experiments, without losing
generality, use such an approach just for avoiding actual
human intervention in each of the 300 training-testing runs.
Additionally, in this manner the V-AYLA human annota-
tors are the same than the ones of the passive approach,
thus, removing variability due to different human expertise.

Hence, in order to simulate V-AYLA on INRIA for
O ¼ Rnd, we randomly sample T trþI to obtain the real-
world pedestrians. For Daimler we do the same using
T trþD . For simulating the case O ¼ Actþ on INRIA, we
randomly sample the false negatives obtained when
applying CV on T trþI . The desired 120 real-world pedes-
trians are collected in such a manner. Daimler case is
analogous by using T trþD .

Rnd and Actþ involve manual annotation of pedes-
trian BBs. However, in Act� the annotations must be pro-
vided by the passively learnt pedestrian detector. INRIA
data set includes the images (=trþI ) and annotations from
which T trþI is obtained. Thus, we apply DV to =trþI
images, and collect the desired number of pedestrian
detections following Act� behavior. Note that in these
experiments Actþ and Act� take samples from the same
original pedestrians in =trþR . Once such pedestrians are
scaled to the CW size, the difference between those com-
ing from Actþ and Act� is that, in the former case, the
original pedestrians were annotated by a human oracle,
while in the latter case it is the own pedestrian detector
which annotates them. Simulating Act� in Daimler is not
directly possible since =trþD is not provided, just the corre-
sponding T trþD is publicly available. In this case, instead
of applying DV to =trþD , we apply CV to T trþD . Therefore,
instead of Act� we term as Act
 such an O.

For O ¼ Act�, 240 real-world pedestrians are selected.
However, only 120 BBs are annotated by a human oracle
(Actþ), the others are collected according to either Act�
for INRIA or Act
 for Daimler.

In Section 4.3 we saw that V-AYLA involves finding a
threshold value Thr. Applying the proposed procedure,
we found that Thr ¼ �0:5 is a good compromise for all
descriptors and real-world data under test.

Table 3 shows the application of V-AYLA on INRIA
for O 2 fRnd;Actþ;Act�;Act�g, combined with both
ORG and AUG. Regarding Daimler, we show analogous

Fig. 3. V-AYLA: passive + domain adaptation training.
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experiments but replacing Act� by Act
, which propa-
gates to Act�. Fig. 4 plots the curves corresponding to
most interesting results.

4.5 Discussion

For performing domain adaptation, source and target
domains must be correlated, i.e., the passive learning
stage of V-AYLA must not give random results, other-
wise, the adaptation stage cannot improve them. Fortu-
nately, such a stage of V-AYLA already offers a good
approximation as seen in the results of Table 2, i.e., vir-
tual-world samples alone help to learn a relatively good
pedestrian classifier for real-world images.4 Thanks to
that, the adaptation stage of V-AYLA is able to provide
the desired results by just manually annotating a few
real-world pedestrian BBs (i.e., 120 here). In order to sup-
port this statement we have run different statistical tests
to compare the results based on just real-world data with
the counterparts based on the analyzed domain adapta-
tion techniques.

First, we have compared the different cool worlds, i.e.,
ORG vs AUG. In particular, we use a paired Wilcoxon

test considering separately the three descriptors times the
four oracles, irrespective of the real-world testing data
set. This turns out in 12 tests. For eight of them AUG is
better than ORG, while in the rest there is no statistically
meaningful difference. In fact, Table 3 shows that in
some cases there are large differences (e.g., for LBP with
Daimler) but for the best detectors (i.e., using HOG+LBP)
there is not almost difference. However, for the sake of
reducing the number of remaining statistical tests, in the
rest of this section we focus on AUG.

Second, we have compared the results of the four
oracles using a Friedman test [44]. As intuitively expected
from the results in Table 3, among oracles Rnd, Actþ and
Act� there is no statistically meaningful performance dif-
ference. However, Act� outputs worse results thought
still improves the performance of using virtual-world data
alone. At this point we chose the use of either Actþ or
Act� since they have an advantage with respect to Rnd.
In particular, it is worth to mention that the pedestrian
examples of both INRIA and Daimler data sets where
annotated by computer vision experts in proprietary soft-
ware environments, thus, they present good accuracy and
variability. Therefore, the Rnd strategy used here is
implicitly assuming good annotators. However, this is not

Fig. 4. Results for the best cases in Table 3.

4. ”She [Ayla] knew they were men, though they were the first men of the
Others she could remember seeing. She had not been able to visualize a man,
but the moment she saw these two, she recognized why Oda had said men of
the Others looked like her.” from The valley of the horses (Earth’s Children),
J.M. Auel.

TABLE 3
Domain Adaptation Results

For FPPI 2 ½0:1; 1�, AMR (percent) mean and standard deviation are
indicated. Bold values remark the best mean for each real-world
testing set.
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always the case when using modern web-based annota-
tion tools [6], [8]. We believe, that active strategies (Actþ,
Act�) have the potential advantage of teaching the human
annotator how good quality annotations should be done,
since he/she sees the detections output by the current
pedestrian detector.

We would like to mention that, although the Act�
works worse than the other oracles still provides a large
adaptation (e.g., for INRIA setting more than five points
with respect to virtual-world based training alone) with
the advantage of not requiring manual BB annotations. In
fact, Act
 (i.e., simulated Act�) drives to an analogous
performance even though it is based on manual annota-
tions. Note that, in order to do a fair comparison, for
respective V-AYLA train-test runs of Act
 and Act� the
same pedestrians are used, only the BB coordinates fram-
ing them are different. Therefore, given the potentiality
of even reducing more manual annotation we think that
the Act� type of oracles (retrained for adaptation from
self-detections) deserves more research in the future.

Using Wilcoxon unpaired test, we assess if V-AYLA
(Actþ and Act�) has achieved domain adaptation, i.e.,
the null hypothesis is that classifiers trained according to
the passive method and V-AYLA exhibit the same perfor-
mance. In the case of Actþ, for HOG V-AYLA is better in
1:12 points with p-value ¼ 0:9097, for LBP it is worse in
1:89 points with p-value ¼ 0:7337, and for HOGþLBP it is
better in 0:35 points with p-value ¼ 0:8501. Therefore, we
consider that V-AYLA/Actþ has reached domain adapta-
tion. The analogous analysis for Act� concludes that for
HOG V-AYLA is better in 1:25 points with p-value
¼ 0:3847, for LBP the same with 1:65 points and p-value
¼ 0:9097, while for HOGþLBP it is worse in 0:50 points
with p-value ¼ 0:3847. Thus, again we consider that V-
AYLA/Actþ has reached domain adaptation.

In Table 4 we summarize the performance improvement
obtained when adding the 10 percent of real-world data to

virtual-world one, and viceversa. Note that adding the 10
percent of real-world data turns out in improvements from
4.5 points to even 10.5 (D1). An analogous situation is
observed regarding the contribution of the virtual data (D2).
In the latter case the improvement for HOG (over 8 points
for INRIA and Daimler cases) is remarkable since more
elaborated models like Latent-SVM part-based ones rely on
HOG-style information [20], [34].

In conclusion, V-AYLA allows to significatively save
manual annotation effort while providing pedestrian
detectors of comparable performance than the obtained
by using standard passive training based on a larger
amount of manual annotations.

4.6 Additional Experiments

For complementing V-AYLA performance assessment,
we rely on the popular pedestrian data set of Caltech
[4]. It contains color images of 640� 480 pix resolution
acquired from a vehicle driven through different urban
scenarios at different day times. We focus on the best
performance curves, i.e., those provided by the

TABLE 4
Rows T trV Show Results by Training with V Data

Only (from Table 2)

In rows 10% T trI and 10%; T trD show results by training with the 10 per-
cent of the available real-world training data of I and D, resp. Rows
Actþ/AUG reproduce domain adaptation results from Table 3, where the
10 percent or real-world pedestrians combined with the virtual-world
ones are the same than for the corresponding 10% T trI and 10% T trD
rows. D1 rows show the difference between the mean of corresponding

T trV and Actþ/AUG. D2 rows illustrate differences between 10% T trI =
10% T trD and Actþ/AUG.

TABLE 5
Notation Summary
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combination HOG+LBP as well as Actþ and Act�. For
this set of features both AUG and ORG provided rather
close performance (see Table 3), thus, we test both.

For training, in [4] it is used INRIA training data. Here
we perform a set of experiments following such
approach, thus, we will adapt the virtual-world data to
INRIA training one and then test in Caltech data. In addi-
tion, we also use Caltech training data to perform another

set of experiments where the virtual-world data is
directly adapted to Caltech one, i.e., instead of doing it
through INRIA training data. In particular, from Caltech
training videos we selected all the non-occluded pedes-
trians taller than 72 pix but avoiding the inclusion of the
same pedestrian many times. This procedure outputs
790 pedestrians, thus, we have 1,580 examples after mir-
roring. Moreover, to keep the same ratio between positive
and negative training data than in previous experiments,
we randomly choose 605 pedestrian-free Caltech training
frames. In both types of experiments we set the CW fol-
lowing INRIA settings, and we use image up-scaling dur-
ing testing for detecting reasonable pedestrians (i.e., most
representative ones [4]) taller than 50 pix but not reach-
ing the 96 pix of the INRIA CW setting.

Results are plotted in Fig. 5. Both training with INRIA
and virtual-world data performs better than using the
Caltech training data our automatic procedure has col-
lected. This may suggest that such data lacks variability.
In fact, it can be thought as a random human annotation
of 790 pedestrians taller than 72 pix. However, this is not
important for the purpose of this paper since we can
assume that the baseline performance is the one based on
INRIA training data as is usually done [4]. Note also that
using only the 10 percent of the real-world training data,
either Caltech or INRIA, drops the performance in more
than 6 points. However, combining such an amount of
real-world data with the virtual-world one improves
more than 6 points the baseline when using the ORG cool
world, for both the Actþ and Act� oracles. Let us remind
that in the Act� case it is used an additional amount of
10 percent real-world data collected by V-AYLA without
requiring manual annotation of pedestrian BBs. The best
performance is given by V-AYLA based on ORG/Act�
and Caltech training data. In terms of manually anno-
tated pedestrian BBs only 79 are provided for training
such a pedestrian detector. In these experiments ORG
approach clearly outperforms AUG, which opens a ques-
tion for our future work, namely, how to determine a pri-
ori the best training cool world, if possible.

Fig. 6 shows the last set of experiments. We progressively
increase the amount of target domain (real-world) pedes-
trians combined with the virtual-world ones for training.
Again we focus on HOG+LBP and both ORG and AUG.
Since the total amount of real-world pedestrians available

Fig. 5. Adaptation for Caltech reasonable testing set, using INRIA (top)
and Caltech (bottom) training data.

Fig. 6. AMRs of progressively adding more (10-100 percent) target domain (real-world) training pedestrians to the virtual-world ones. Lines mark the
AMR for detectors trained with the 100 percent of the indicated training set.
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for training is fixed, the more we add the less differences
would be among oracles. Thus, we just run the Rnd one and
each experiment is run just once. We can see that for Daimler
and INRIA testing, ORG and AUG do not show significant
differences, while for Caltech again ORG outperforms AUG.
We see that by incorporating the real-world samples the
AMR is reduced. However, there is a point where the
improvement stops, which we think is because the limit of
the holistic model based on HOGþLBP/Lin-SVM is reached.

5 CONCLUSION

In this paper we have explored how virtual worlds can
help in learning appearance-based models for pedestrian
detection in real-world images. Ultimately, this would be
a proof of concept of a new framework for obtaining low
cost precise annotations of objects, whose visual appear-
ance must be learnt.

In order to automatically collect pedestrians and back-
ground samples we rely on players/drivers of a photo-
realistic videogame borrowed from the entertainment
industry. With such samples we have followed a standard
passive-discriminative learning paradigm to train a vir-
tual-world based pedestrian classifier that must operate
in images depicting the real world (INRIA, Daimler and
Caltech). Following such a framework we have tested
state-of-the-art pedestrian descriptors (HOG/LBP/
HOG+LBP) with Lin-SVM. Within the same pedestrian
detection scheme, we have employed virtual-world based
classifiers and real-world based ones (Virtual, INRIA,
Daimler). In total 120 train-test runs have been performed
to assess detection performance. We have reached the
conclusion that both virtual-world and real-world based
training behave equally. This means that virtual-world
based training can provide excellent performance, but it
can also suffer the data set shift problem as real-world
based training does.

Accordingly, we have designed a domain adaptation
framework, V-AYLA, in which we have tested different
techniques to collect a few pedestrian samples from the
target domain (real world) and to combine them (cool
world) with the many examples of the source domain
(virtual world) in order to train a domain adapted pedes-
trian classifier that will operate in the target domain. Fol-
lowing V-AYLA we have performed 400 train-test runs
to assess detection performance. This assessment shows
how V-AYLA reaches the same performance than train-
ing and testing with real-world images of the same
domain (in the case of Caltech it is clearly improved).

Our next future work is twofold. On the one hand, we
will extend the V-AYLA concept to deformable part mod-
els [20] with the aim of going beyond state-of-the-art
results. On the other hand, we want to achieve unsuper-
vised domain adaptation, being the challenge how to
reproduce Act� oracle without human intervention.
Finally, we also plan to extend our work for detecting
other types of objects (e.g., vehicles).
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