Master in Internet of Things for eHealth

M5. Smart Data Knowledge / Analytics

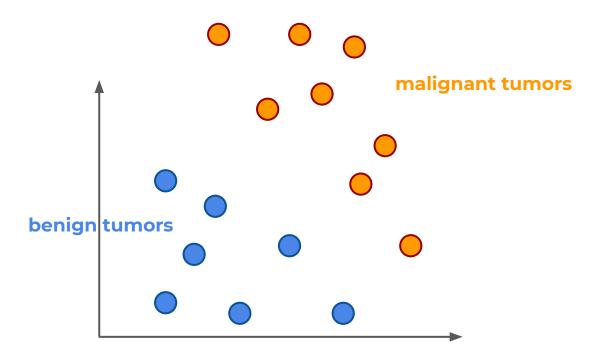
Support Vector Machines

Instructor David Gerónimo

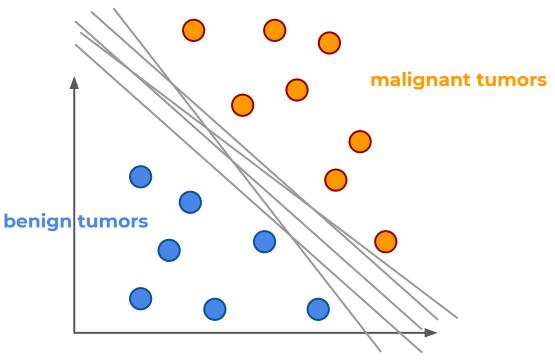
research@davidgeronimo.com

January 9th 2019

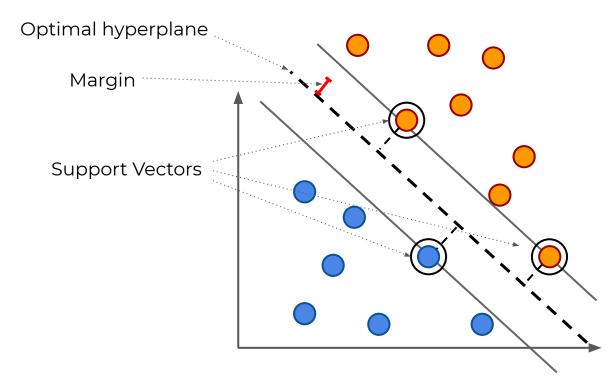
• What is the optimal way of separating a set of points in a space?



• What is the optimal way of separating a set of points in a space?

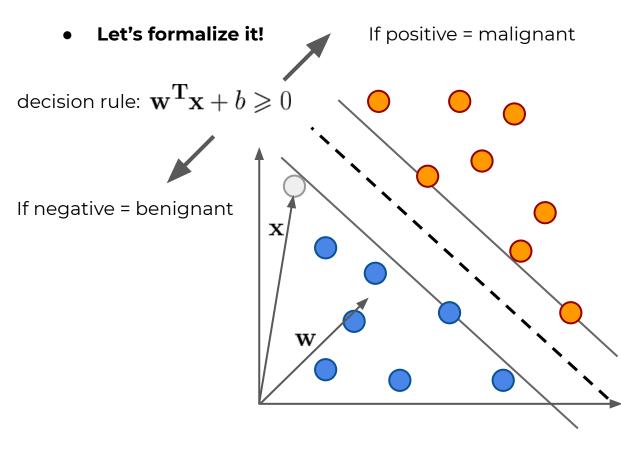


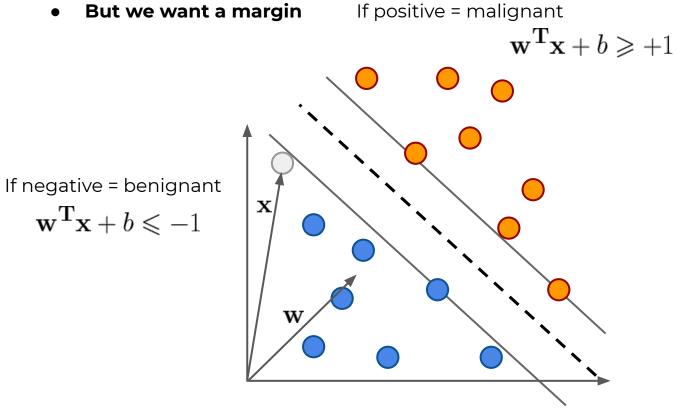
• What is the optimal way of separating a set of points in a space?



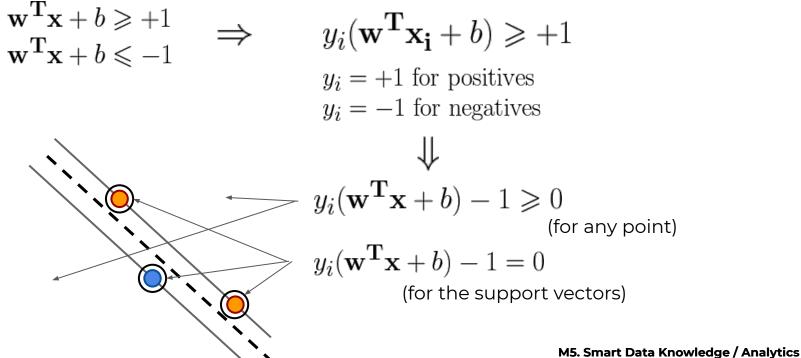
Vladimir Vapnik (1990s)

"The one with the largest margin"



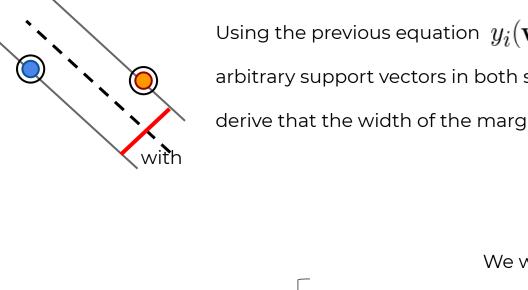


• We simplify the equations for convenience



Master in Internet of Things for eHealth

Width of the margin



Using the previous equation $y_i(\mathbf{w}^{\mathbf{T}}\mathbf{x}+b) - 1 = 0$ and two arbitrary support vectors in both sides of the margin, we can derive that the width of the margin is $\frac{2}{11-11}$ $\|\mathbf{w}\|$ We want to **maximize** this width! Which is the same as: we want to **minimize** $\frac{1}{2}||\mathbf{w}||^2$ (for mathematical convenience) M5. Smart Data Knowledge / Analytics

Master in Internet of Things for eHealth

How to find extrema of a function with constraints? •

Lagrange Multipliers

width of the

Constraints (all the points)

$$L = \frac{1}{2} ||\mathbf{w}||^2 - \sum_i \alpha_i [y_i(\mathbf{w^T x_i} + b) - 1]$$

We want to maximize the width of the margin

This is a Lagrange multiplier

• How to find extrema of a function with constraints?

Solving the Lagrange Multipliers

$$L = \frac{1}{2} ||\mathbf{w}||^2 - \sum_i \alpha_i [y_i(\mathbf{w}^T \mathbf{x_i} + b) - 1]$$

$$\frac{\partial L}{\partial \mathbf{w}} = \mathbf{w} - \sum_i \alpha_i y_i \mathbf{x_i} = 0 \Rightarrow \mathbf{w} = \sum_i \alpha_i y_i \mathbf{x_i}$$

$$\frac{\partial L}{\partial b} = -\sum_i \mathbf{x_i} y_i = 0 \Rightarrow \sum_i \mathbf{x_i} y_i = 0$$

• How to find extrema of a function with constraints?

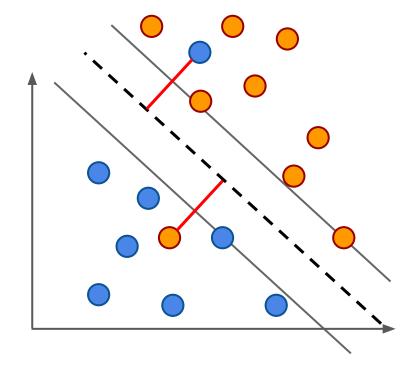
Putting all together and deriving we reach to this equation to optimize:

$$L = \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i} \sum_{j} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x_{i} x_{j}}$$
Interestingly, it depends only on **dot products of samples**

More interestingly, the **decision rule** to classify the sample \mathbf{x}_{u} also depends only on the dot product of samples:

$$\sum_{i} \alpha_{i} y_{i} \mathbf{x_{i}} \mathbf{x_{u}} + b \ge 0$$

• Now what if not fully linearly separable?



This was the original decision rule

$$y_i(\mathbf{w^T}\mathbf{x_i} + b) \ge 1$$

Add a slack variable

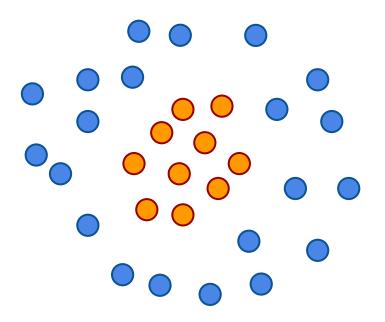
 $y_i(\mathbf{w}^T \mathbf{x_i} + b) \ge 1 - \xi_i$

And incorporate it.in the optimization

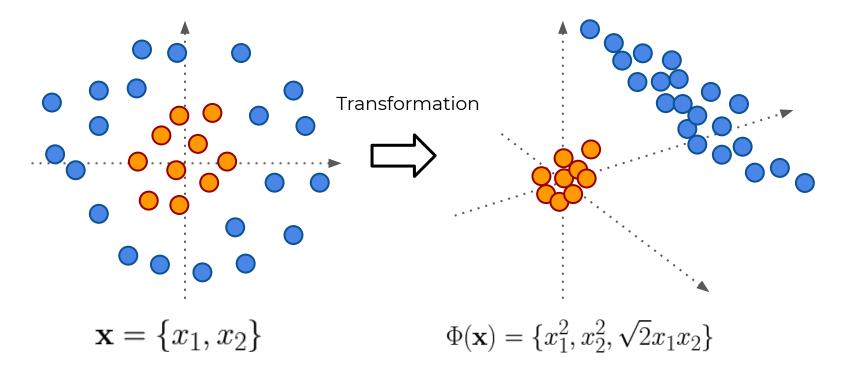
 $C\sum_i \xi_i$

(C sets how strict are we to outliers)

• What if non-linearly separable at all?



• Project the data into a higher dimensional space to make it linearly separable



• The kernel trick

This was the decision rule

$$\sum_{i} \alpha_{i} y_{i} \mathbf{x_{i}} \mathbf{x_{u}} + b \ge 0$$

Now if we use
transformations, it
becomes:
$$\sum_{i} \alpha_{i} y_{i} \Phi(\mathbf{x_{i}}) \Phi(\mathbf{x_{u}}) + b \ge 0$$

$$K(\mathbf{x_{i}}, \mathbf{x_{u}}) = \Phi(\mathbf{x_{i}}) \Phi(\mathbf{x_{u}})$$

We do not even need to know $\Phi,$ but the results of the dot product of the transformations

(This applies also to the optimization equation)

• The kernel trick

This was the decision rule

$$\sum_{i} \alpha_{i} y_{i} \mathbf{x_{i}} \mathbf{x_{u}} + b \ge 0$$

Now if we use
transformations, it
becomes:
$$\sum_{i} \alpha_{i} y_{i} \Phi(\mathbf{x_{i}}) \Phi(\mathbf{x_{u}}) + b \ge 0$$

$$K(\mathbf{x_{i}}, \mathbf{x_{u}}) = \Phi(\mathbf{x_{i}}) \Phi(\mathbf{x_{u}})$$

Less operations Less spatial complexity

We do not even need to know $\Phi,$ but the results of the dot product of the transformations

(This applies also to the optimization equation)

The kernel trick

Instead of manually defining transforms, we just play with dot products:

```
W/o kernel trick \begin{cases} Define, \Phi(\mathbf{x}) \to 1, \sqrt{2}x_1, \sqrt{2}x_2, x_1^2, x_2^2, \sqrt{2}x_1x_2. \\ \langle \Phi(\mathbf{x}_i), \Phi(\mathbf{x}_j) \rangle \\ = \langle \{1, \sqrt{2}x_{i1}, \sqrt{2}x_{i2}, x_{i1}^2, x_{i2}^2, \sqrt{2}x_{i1}x_{i2}\}, \{1, \sqrt{2}x_{j1}, \sqrt{2}x_{j2}, x_{j1}^2, x_{j2}^2, \sqrt{2}x_{j1}x_{j2}\} \rangle \ (6.1) \\ = 1 + 2x_{i1}x_{j1} + 2x_{i2}x_{j2} + x_{i1}^2x_{j1}^2 + x_{i2}^2x_{j2}^2 + 2x_{i1}x_{i2}x_{j1}x_{j2} \ (6.2) \end{cases}
    \begin{pmatrix} = 1 + 2x_{i1}x_{j1} + 2x_{i2}x_{j2} + w_{i1}w_{j1} + w_{i2}w_{j2} + -4x_{i2}w_{j2} + -4x_{i2}w_{j1} + y_{i2}w_{j2} \\ (1 + \langle \mathbf{x}_i, \mathbf{x}_j \rangle)^2 \\ = (1 + x_{i1}x_{j1} + x_{i2}x_{j2})^2 \quad (7.1) \\ = 1 + 2x_{i1}x_{j1} + 2x_{i2}x_{j2} + x_{i1}^2x_{j1}^2 + x_{i2}^2x_{j2}^2 + 2x_{i1}x_{i2}x_{j1}x_{j2} \quad (7.2)
```

(Example from https://www.guora.com/What-is-the-kernel-trick)

• The kernel trick

Some examples of kernels are:

 $K(x_i, x_j) = (x_i \cdot x_j + 1)^p$; polynomial kernel. $K(x_i, x_j) = e^{\frac{-1}{2\sigma^2}(x_i - x_j)^2}$; Gaussian kernel; Special case of Radial Basis Function. $K(x_i, x_j) = e^{-\gamma(x_i - x_j)^2}$; RBF Kernel $K(x_i, x_j) = \tanh(\eta x_i \cdot x_j + \nu)$; Sigmoid Kernel; Activation function for NN.